HOSTS_ACCESS(5)                                                HOSTS_ACCESS(5)

       hosts_access,  hosts.allow,  hosts.deny - format of host access control

       This manual page describes a simple access  control  language  that  is
       based  on  client  (host  name/address, user name), and server (process
       name, host name/address) patterns.  Examples are given at the end.  The
       impatient  reader  is  encouraged to skip to the EXAMPLES section for a
       quick introduction.

       Note that in a `stock' installation of the tcp_wrappers package, a pro-
       gram  called tcpd is called from /etc/inetd.conf, and this program per-
       forms the wrapper checks and  then  executes  the  daemon.   In  NetBSD
       inetd(8)  has  been  modified  to perform this check internally, and so
       tcpd is neither used nor supplied.

       Also note that libwrap under NetBSD uses the extensions to  the  access
       control language as described in the hosts_options(5).

       In  the  following text, daemon is the process name of a network daemon
       process, and client is the name and/or address  of  a  host  requesting
       service.   Network daemon process names are specified in the inetd con-
       figuration file.

       The access control software consults two files.  The  search  stops  at
       the first match:

       ·      Access  will  be  granted when a (daemon,client) pair matches an
              entry in the /etc/hosts.allow file.

       ·      Otherwise, access will be denied  when  a  (daemon,client)  pair
              matches an entry in the /etc/hosts.deny file.

       ·      Otherwise, access will be granted.

       A  non-existing  access  control file is treated as if it were an empty
       file.  Thus, access control can be turned off by  providing  no  access
       control files.

       Each access control file consists of zero or more lines of text.  These
       lines are processed in order of appearance.  The search terminates when
       a match is found.

       ·      A  newline  character  is ignored when it is preceded by a back-
              slash character.  This permits you to break  up  long  lines  so
              that  they are easier to edit.  WARNING:  The total length of an
              entry can be no more than 2047  characters  long  including  the
              final newline.

       ·      Blank  lines  or  lines  that  begin  with  a  `#´ character are
              ignored.  This permits you to insert comments and whitespace  so
              that the tables are easier to read.

       ·      All  other  lines  should  satisfy  the following format, things
              between [] being optional:

                 daemon_list : client_list : option : option ...

       daemon_list is a list of one or more daemon process names (argv[0] val-
       ues) or wildcards (see below).

       client_list  is  a list of one or more host names, host addresses, pat-
       terns or wildcards (see below) that will be matched against the  client
       host  name  or address.  When a client_list item needs to include colon
       character (for IPv6 addresses), the  item  needs  to  be  wrapped  with
       square bracket.

       The  more  complex forms daemon@host and user@host are explained in the
       sections on server endpoint patterns and on  client  username  lookups,

       List elements should be separated by blanks and/or commas.

       With  the  exception  of  NIS (YP) netgroup lookups, all access control
       checks are case insensitive.

       The access control language implements the following patterns:

       ·      A string that begins with a  `.´  character.   A  host  name  is
              matched  if  the last components of its name match the specified
              pattern.  For example, the pattern `´  matches  the  host
              name `´.

       ·      A  string  that  ends  with  a `.´ character.  A host address is
              matched if its first numeric fields match the given string.  For
              example,  the pattern `131.155.´ matches the address of (almost)
              every host on the Eindhoven University network (131.155.x.x).

       ·      A string that begins with an `@´ character is treated as an  NIS
              (formerly  YP) netgroup name.  A host name is matched if it is a
              host member of the specified netgroup.  Netgroup matches are not
              supported for daemon process names or for client user names.

       ·      An  expression of the form `n.n.n.n/m.m.m.m´ is interpreted as a
              `net/mask´ pair.  A host address is matched if `net´ is equal to
              the bitwise AND of the address and the `mask´.  For example, the
              net/mask  pattern  `´  matches   every
              address  in  the  range `´ through `´.
              Note that `m.m.m.m´ portion must always be specified.

       ·      An expression of the form `ipv6-addr/ipv6-mask´  is  interpreted
              as  masked  IPv6  address  match,  just like masked IPv4 address
              match (see above).  Note that `ipv6-mask´ portion must always be

       ·      An  expression  of the form `ipv6-addr/prefixlen´ is interpreted
              as masked IPv6 address match (with  mask  specified  by  numeric
              prefixlen),  just  like  masked  IPv4 address match (see above).
              Note that `prefixlen´ portion must always be specified.

       ·      A string that begins with a `/´ character is treated as  a  file
              name.  A  host name or address is matched if it matches any host
              name or address pattern listed in the named file. The file  for-
              mat is zero or more lines with zero or more host name or address
              patterns separated by whitespace.  A file name  pattern  can  be
              used anywhere a host name or address pattern can be used.

       The access control language supports explicit wildcards:

       ALL    The universal wildcard, always matches.

       LOCAL  Matches any host whose name does not contain a dot character.

              Matches  any  user  whose  name is unknown, and matches any host
              whose name or address are unknown.  This pattern should be  used
              with  care:  host names may be unavailable due to temporary name
              server problems.  A network address will be unavailable when the
              software  cannot  figure  out what type of network it is talking

       KNOWN  Matches any user whose name is known, and matches any host whose
              name  and  address  are known.  This pattern should be used with
              care: host names may be unavailable due to temporary name server
              problems.   A network address will be unavailable when the soft-
              ware cannot figure out what type of network it is talking to.

              Matches any host whose name does not match  its  address.   Note
              that  unlike  the  default  mode  of tcpd, NetBSD inetd does not
              automatically drop these requests; you must explicitly drop them
              in your /etc/hosts.allow or /etc/hosts.deny file.

              Matches any host whose reversed address appears in the DNS under
              domain.  The primary such domain used for  blocking  unsolicited
              commercial e-mail (spam) is `´.

       EXCEPT Intended  use  is of the form: `list_1 EXCEPT list_2´; this con-
              struct matches anything that matches list_1  unless  it  matches
              list_2.   The EXCEPT operator can be used in daemon_lists and in
              client_lists.  The EXCEPT operator can be nested: if the control
              language would permit the use of parentheses, `a EXCEPT b EXCEPT
              c´ would parse as `(a EXCEPT (b EXCEPT c))´.

       The following expansions are available within some options:

       %a (%A)
              The client (server) host address.

       %c     Client information: user@host, user@address,  a  host  name,  or
              just an address, depending on how much information is available.

       %d     The daemon process name (argv[0] value).

       %h (%H)
              The client (server) host name or address, if the  host  name  is

       %n (%N)
              The client (server) host name (or "unknown" or "paranoid").

       %p     The daemon process id.

       %s     Server  information: daemon@host, daemon@address, or just a dae-
              mon name, depending on how much information is available.

       %u     The client user name (or "unknown").

       %%     Expands to a single `%´ character.

       Characters in % expansions that may confuse the shell are  replaced  by

       In  order  to distinguish clients by the network address that they con-
       nect to, use patterns of the form:

          process_name@host_pattern : client_list ...

       Patterns like these can be used when the machine has different internet
       addresses with different internet hostnames.  Service providers can use
       this facility to offer FTP, GOPHER or WWW archives with internet  names
       that  may even belong to different organizations.  See also the `twist'
       option  in  the  hosts_options(5)  document.   Some  systems  (Solaris,
       FreeBSD,  NetBSD) can have more than one internet address on one physi-
       cal interface; with other systems you may have to resort to SLIP or PPP
       pseudo interfaces that live in a dedicated network address space.

       The  host_pattern  obeys  the  same  syntax  rules  as  host  names and
       addresses in client_list context.  Usually, server endpoint information
       is available only with connection-oriented services.

       When  the  client  host  supports  the  RFC  931 protocol or one of its
       descendants (TAP, IDENT, RFC 1413) the wrapper  programs  can  retrieve
       additional  information  about the owner of a connection.  Client user-
       name information, when available, is logged together  with  the  client
       host name, and can be used to match patterns like:

          daemon_list : ... user_pattern@host_pattern ...

       The  daemon wrappers can be configured at compile time to perform rule-
       driven username lookups (default) or to always interrogate  the  client
       host.   In  the  case  of  rule-driven username lookups, the above rule
       would cause username lookup only when  both  the  daemon_list  and  the
       host_pattern match.

       A  user pattern has the same syntax as a daemon process pattern, so the
       same wildcards apply  (netgroup  membership  is  not  supported).   One
       should not get carried away with username lookups, though.

       ·      The  client  username  information  cannot be trusted when it is
              needed most, i.e. when the client system has  been  compromised.
              In  general,  ALL  and (UN)KNOWN are the only user name patterns
              that make sense.

       ·      Username lookups are possible only with TCP-based services,  and
              only  when  the client host runs a suitable daemon; in all other
              cases the result is "unknown".

       ·      A well-known UNIX kernel bug may  cause  loss  of  service  when
              username  lookups are blocked by a firewall.  The wrapper README
              document describes a procedure to find out if  your  kernel  has
              this bug.

       ·      Username lookups may cause noticeable delays for non-UNIX users.
              The default timeout for username  lookups  is  10  seconds:  too
              short to cope with slow networks, but long enough to irritate PC

       Selective username lookups can alleviate the last problem.   For  exam-
       ple, a rule like:

          daemon_list : @pcnetgroup ALL@ALL

       would  match members of the pc netgroup without doing username lookups,
       but would perform username lookups with all other systems.

       A flaw in the sequence number generator of many TCP/IP  implementations
       allows  intruders  to  easily impersonate trusted hosts and to break in
       via, for example, the remote shell service.  The IDENT (RFC  931  etc.)
       service  can  be  used  to  detect such and other host address spoofing

       Before accepting a client request, the wrappers can use the IDENT  ser-
       vice to find out that the client did not send the request at all.  When
       the client host provides IDENT service, a negative IDENT lookup  result
       (the client matches `UNKNOWN@host') is strong evidence of a host spoof-
       ing attack.

       A positive IDENT lookup result (the  client  matches  `KNOWN@host')  is
       less  trustworthy.   It  is  possible for an intruder to spoof both the
       client connection and the IDENT  lookup,  although  doing  so  is  much
       harder than spoofing just a client connection.  It may also be that the
       client´s IDENT server is lying.

       Note: IDENT lookups don´t work with UDP services.

       The language is flexible enough that different types of access  control
       policy  can be expressed with a minimum of fuss.  Although the language
       uses two access control tables, the most common policies can be  imple-
       mented with one of the tables being trivial or even empty.

       When  reading  the  examples  below it is important to realize that the
       allow table is scanned before the deny table, that  the  search  termi-
       nates  when  a match is found, and that access is granted when no match
       is found at all.

       The examples use host and  domain  names.   They  can  be  improved  by
       including  address  and/or  network/netmask  information, to reduce the
       impact of temporary name server lookup failures.

       In this case, access is denied by default.  Only explicitly  authorized
       hosts are permitted access.

       The default policy (no access) is implemented with a trivial deny file:

          ALL: ALL

       This denies all service to all hosts, unless they are permitted  access
       by entries in the allow file.

       The  explicitly  authorized  hosts  are  listed in the allow file.  For

          ALL: LOCAL @some_netgroup
          ALL: EXCEPT

       The first rule permits access from hosts in the local domain (no `.´ in
       the  host  name)  and  from members of the some_netgroup netgroup.  The
       second rule permits access from all  hosts  in  the  domain
       (notice  the  leading  dot),  with the exception of

       Here, access is granted by default; only explicitly specified hosts are
       refused service.

       The  default  policy (access granted) makes the allow file redundant so
       that it can be omitted.  The explicitly non-authorized hosts are listed
       in the deny file.  For example:

          ALL:, .some.domain
          ALL EXCEPT in.fingerd:, .other.domain

       The  first  rule denies some hosts and domains all services; the second
       rule still permits finger requests from other hosts and domains.

       The next example permits tftp requests from hosts in the  local  domain
       (notice  the  leading  dot).  Requests from any other hosts are denied.
       Instead of the requested file, a finger probe is sent to the  offending
       host.  The result is mailed to the superuser.

          in.tftpd: LOCAL, .my.domain

          in.tftpd: ALL: spawn (/some/where/safe_finger -l @%h | \
               /usr/ucb/mail -s %d-%h root) &

       (The  safe_finger  command  can be gotten from the tcp_wrappers package
       and installed in a suitable place.  It limits possible damage from data
       sent  by the remote finger server.  It gives better protection than the
       standard finger command.)

       The expansion of the %h (client host) and %d (service  name)  sequences
       is described in the section on shell commands.

       Warning:  do not booby-trap your finger daemon, unless you are prepared
       for infinite finger loops.

       On network firewall systems this trick can  be  carried  even  further.
       The typical network firewall only provides a limited set of services to
       the outer world.  All other services can  be  "bugged"  just  like  the
       above tftp example.  The result is an excellent early-warning system.

       An error is reported when a syntax error is found in a host access con-
       trol rule; when the length of an access control rule exceeds the capac-
       ity  of  an  internal buffer; when an access control rule is not termi-
       nated by a newline character; when the result  of  %<letter>  expansion
       would  overflow  an  internal  buffer;  when  a  system call fails that
       shouldn´t.  All problems are reported via the syslog daemon.

       /etc/hosts.allow, (daemon,client) pairs that are granted access.
       /etc/hosts.deny, (daemon,client) pairs that are denied access.

       hosts_options(5), hosts_access(3)
       tcpdchk(8), tcpdmatch(8), test programs.

       If a name server lookup times out, the host name will not be  available
       to the access control software, even though the host is registered.

       Domain name server lookups are case insensitive; NIS (formerly YP) net-
       group lookups are case sensitive.

       The total length of an entry can be no more than 2047 characters  long,
       including the final newline.

       Wietse Venema (
       Department of Mathematics and Computing Science
       Eindhoven University of Technology
       Den Dolech 2, P.O. Box 513,
       5600 MB Eindhoven, The Netherlands


You can also request any man page by name and (optionally) by section:


Use the DEFAULT collection to view manual pages for third-party software.

©1994 Man-cgi 1.15, Panagiotis Christias
©1996-2019 Modified for NetBSD by Kimmo Suominen