OPENCRYPTO(9)          NetBSD Kernel Developer's Manual          OPENCRYPTO(9)

     opencrypto, crypto_get_driverid, crypto_register, crypto_kregister,
     crypto_unregister, crypto_done, crypto_kdone, crypto_newsession,
     crypto_freesession, crypto_dispatch, crypto_kdispatch, crypto_getreq,
     crypto_freereq -- API for cryptographic services in the kernel

     #include <opencrypto/cryptodev.h>


     crypto_register(u_int32_t, int, u_int16_t, u_int32_t,
         int (*)(void *, u_int32_t *, struct cryptoini *),
         int (*)(void *, u_int32_t *), int (*)(u_int64_t),
         int (*)(struct cryptop *), void *);

     crypto_kregister(u_int32_t, int, u_int32_t,
         int (*)(void *, struct cryptkop *, int), void *);

     crypto_unregister(u_int32_t, int);

     crypto_done(struct cryptop *);

     crypto_kdone(struct cryptkop *);

     crypto_newsession(u_int64_t *, struct cryptoini *, int);


     crypto_dispatch(struct cryptop *);

     crypto_kdispatch(struct cryptkop *);

     struct cryptop *

     crypto_freereq(struct cryptop *);

     #define EALG_MAX_BLOCK_LEN      16

     struct cryptoini {
             int                cri_alg;
             int                cri_klen;
             int                cri_rnd;
             void            *cri_key;
             u_int8_t           cri_iv[EALG_MAX_BLOCK_LEN];
             struct cryptoini  *cri_next;

     struct cryptodesc {
             int                crd_skip;
             int                crd_len;
             int                crd_inject;
             int                crd_flags;
             struct cryptoini   CRD_INI;
             struct cryptodesc *crd_next;

     struct cryptop {
             TAILQ_ENTRY(cryptop) crp_next;
             u_int64_t          crp_sid;
             int                crp_ilen;
             int                crp_olen;
             int                crp_etype;
             int                crp_flags;
             void            *crp_buf;
             void            *crp_opaque;
             struct cryptodesc *crp_desc;
             int              (*crp_callback)(struct cryptop *);
             void            *crp_mac;

     struct crparam {
             void         *crp_p;
             u_int           crp_nbits;

     #define CRK_MAXPARAM    8

     struct cryptkop {
             TAILQ_ENTRY(cryptkop) krp_next;
             u_int              krp_op;         /* ie. CRK_MOD_EXP or other */
             u_int              krp_status;     /* return status */
             u_short            krp_iparams;    /* # of input parameters */
             u_short            krp_oparams;    /* # of output parameters */
             u_int32_t          krp_hid;
             struct crparam     krp_param[CRK_MAXPARAM];       /* kvm */
             int               (*krp_callback)(struct cryptkop *);

     opencrypto is a framework for drivers of cryptographic hardware to regis-
     ter with the kernel so ``consumers'' (other kernel subsystems, and even-
     tually users through an appropriate device) are able to make use of it.
     Drivers register with the framework the algorithms they support, and pro-
     vide entry points (functions) the framework may call to establish, use,
     and tear down sessions.  Sessions are used to cache cryptographic infor-
     mation in a particular driver (or associated hardware), so initialization
     is not needed with every request.  Consumers of cryptographic services
     pass a set of descriptors that instruct the framework (and the drivers
     registered with it) of the operations that should be applied on the data
     (more than one cryptographic operation can be requested).

     Keying operations are supported as well.  Unlike the symmetric operators
     described above, these sessionless commands perform mathematical opera-
     tions using input and output parameters.

     Since the consumers may not be associated with a process, drivers may not
     use condition variables: condvar(9).  The same holds for the framework.
     Thus, a callback mechanism is used to notify a consumer that a request
     has been completed (the callback is specified by the consumer on an per-
     request basis).  The callback is invoked by the framework whether the
     request was successfully completed or not.  An error indication is pro-
     vided in the latter case.  A specific error code, EAGAIN, is used to
     indicate that a session number has changed and that the request may be
     re-submitted immediately with the new session number.  Errors are only
     returned to the invoking function if not enough information to call the
     callback is available (meaning, there was a fatal error in verifying the
     arguments).  No callback mechanism is used for session initialization and

     The crypto_newsession() routine is called by consumers of cryptographic
     services (such as the ipsec(4) stack) that wish to establish a new ses-
     sion with the framework.  On success, the first argument will contain the
     Session Identifier (SID).  The second argument contains all the necessary
     information for the driver to establish the session.  The third argument
     indicates whether a hardware driver should be used (1) or not (0).  The
     various fields in the cryptoini structure are:

     cri_alg       Contains an algorithm identifier.  Currently supported
                   algorithms are:


     cri_klen      Specifies the length of the key in bits, for variable-size
                   key algorithms.

     cri_rnd       Specifies the number of rounds to be used with the algo-
                   rithm, for variable-round algorithms.

     cri_key       Contains the key to be used with the algorithm.

     cri_iv        Contains an explicit initialization vector (IV), if it does
                   not prefix the data.  This field is ignored during initial-
                   ization.  If no IV is explicitly passed (see below on
                   details), a random IV is used by the device driver process-
                   ing the request.

     cri_next      Contains a pointer to another cryptoini structure.  Multi-
                   ple such structures may be linked to establish multi-algo-
                   rithm sessions (ipsec(4) is an example consumer of such a

     The cryptoini structure and its contents will not be modified by the
     framework (or the drivers used).  Subsequent requests for processing that
     use the SID returned will avoid the cost of re-initializing the hardware
     (in essence, SID acts as an index in the session cache of the driver).

     crypto_freesession() is called with the SID returned by
     crypto_newsession() to disestablish the session.

     crypto_dispatch() is called to process a request.  The various fields in
     the cryptop structure are:

     crp_sid       Contains the SID.

     crp_ilen      Indicates the total length in bytes of the buffer to be

     crp_olen      On return, contains the length of the result, not including
                   crd_skip.  For symmetric crypto operations, this will be
                   the same as the input length.

                   Indicates the type of buffer, as used in the kernel
                   malloc(9) routine.  This will be used if the framework
                   needs to allocate a new buffer for the result (or for re-
                   formatting the input).

     crp_callback  This routine is invoked upon completion of the request,
                   whether successful or not.  It is invoked through the
                   crypto_done() routine.  If the request was not successful,
                   an error code is set in the crp_etype field.  It is the
                   responsibility of the callback routine to set the appropri-
                   ate spl(9) level.

     crp_etype     Contains the error type, if any errors were encountered, or
                   zero if the request was successfully processed.  If the
                   EAGAIN error code is returned, the SID has changed (and has
                   been recorded in the crp_sid field).  The consumer should
                   record the new SID and use it in all subsequent requests.
                   In this case, the request may be re-submitted immediately.
                   This mechanism is used by the framework to perform session
                   migration (move a session from one driver to another,
                   because of availability, performance, or other considera-

                   Note that this field only makes sense when examined by the
                   callback routine specified in crp_callback.  Errors are
                   returned to the invoker of crypto_process() only when
                   enough information is not present to call the callback rou-
                   tine (i.e., if the pointer passed is NULL or if no callback
                   routine was specified).

     crp_flags     Is a bitmask of flags associated with this request.  Cur-
                   rently defined flags are:

                   CRYPTO_F_IMBUF  The buffer pointed to by crp_buf is an mbuf

     crp_buf       Points to the input buffer.  On return (when the callback
                   is invoked), it contains the result of the request.  The
                   input buffer may be an mbuf chain or a contiguous buffer
                   (of a type identified by crp_alloctype), depending on

     crp_opaque    This is passed through the crypto framework untouched and
                   is intended for the invoking application's use.

     crp_desc      This is a linked list of descriptors.  Each descriptor pro-
                   vides information about what type of cryptographic opera-
                   tion should be done on the input buffer.  The various
                   fields are:

                   crd_skip      The offset in the input buffer where process-
                                 ing should start.

                   crd_len       How many bytes, after crd_skip, should be

                   crd_inject    Offset from the beginning of the buffer to
                                 insert any results.  For encryption algo-
                                 rithms, this is where the initialization vec-
                                 tor (IV) will be inserted when encrypting or
                                 where it can be found when decrypting (sub-
                                 ject to crd_flags).  For MAC algorithms, this
                                 is where the result of the keyed hash will be

                   crd_flags     The following flags are defined:

                                 CRD_F_ENCRYPT      For encryption algorithms,
                                                    this bit is set when
                                                    encryption is required
                                                    (when not set, decryption
                                                    is performed).

                                 CRD_F_IV_PRESENT   For encryption algorithms,
                                                    this bit is set when the
                                                    IV already precedes the
                                                    data, so the crd_inject
                                                    value will be ignored and
                                                    no IV will be written in
                                                    the buffer.  Otherwise,
                                                    the IV used to encrypt the
                                                    packet will be written at
                                                    the location pointed to by
                                                    crd_inject.  The IV length
                                                    is assumed to be equal to
                                                    the blocksize of the
                                                    encryption algorithm.
                                                    Some applications that do
                                                    special ``IV cooking'',
                                                    such as the half-IV mode
                                                    in ipsec(4), can use this
                                                    flag to indicate that the
                                                    IV should not be written
                                                    on the packet.  This flag
                                                    is typically used in con-
                                                    junction with the
                                                    CRD_F_IV_EXPLICIT flag.

                                 CRD_F_IV_EXPLICIT  For encryption algorithms,
                                                    this bit is set when the
                                                    IV is explicitly provided
                                                    by the consumer in the
                                                    crd_iv fields.  Otherwise,
                                                    for encryption operations
                                                    the IV is provided for by
                                                    the driver used to perform
                                                    the operation, whereas for
                                                    decryption operations it
                                                    is pointed to by the
                                                    crd_inject field.  This
                                                    flag is typically used
                                                    when the IV is calculated
                                                    ``on the fly'' by the con-
                                                    sumer, and does not pre-
                                                    cede the data (some
                                                    ipsec(4) configurations,
                                                    and the encrypted swap are
                                                    two such examples).

                                 CRD_F_COMP         For compression algo-
                                                    rithms, this bit is set
                                                    when compression is
                                                    required (when not set,
                                                    decompression is per-

                   CRD_INI       This cryptoini structure will not be modified
                                 by the framework or the device drivers.
                                 Since this information accompanies every
                                 cryptographic operation request, drivers may
                                 re-initialize state on-demand (typically an
                                 expensive operation).  Furthermore, the cryp-
                                 tographic framework may re-route requests as
                                 a result of full queues or hardware failure,
                                 as described above.

                   crd_next      Point to the next descriptor.  Linked opera-
                                 tions are useful in protocols such as
                                 ipsec(4), where multiple cryptographic trans-
                                 forms may be applied on the same block of

     crypto_getreq() allocates a cryptop structure with a linked list of as
     many cryptodesc structures as were specified in the argument passed to

     crypto_freereq() deallocates a structure cryptop and any cryptodesc
     structures linked to it.  Note that it is the responsibility of the call-
     back routine to do the necessary cleanups associated with the opaque
     field in the cryptop structure.

     crypto_kdispatch() is called to perform a keying operation.  The various
     fields in the crytokop structure are:

     krp_op         Operation code, such as CRK_MOD_EXP.

     krp_status     Return code.  This errno-style variable indicates whether
                    there were lower level reasons for operation failure.

     krp_iparams    Number of input parameters to the specified operation.
                    Note that each operation has a (typically hardwired) num-
                    ber of such parameters.

     krp_oparams    Number of output parameters from the specified operation.
                    Note that each operation has a (typically hardwired) num-
                    ber of such parameters.

     krp_kvp        An array of kernel memory blocks containing the parame-

     krp_hid        Identifier specifying which low-level driver is being

     krp_callback   Callback called on completion of a keying operation.

     The crypto_get_driverid(), crypto_register(), crypto_kregister(),
     crypto_unregister(), and crypto_done() routines are used by drivers that
     provide support for cryptographic primitives to register and unregister
     with the kernel crypto services framework.  Drivers must first use the
     crypto_get_driverid() function to acquire a driver identifier, specifying
     the flags as an argument (normally 0, but software-only drivers should
     specify CRYPTOCAP_F_SOFTWARE).  For each algorithm the driver supports,
     it must then call crypto_register().  The first argument is the driver
     identifier.  The second argument is an array of CRYPTO_ALGORITHM_MAX + 1
     elements, indicating which algorithms are supported.  The last three
     arguments are pointers to three driver-provided functions that the frame-
     work may call to establish new cryptographic context with the driver,
     free already established context, and ask for a request to be processed
     (encrypt, decrypt, etc.)  crypto_unregister() is called by drivers that
     wish to withdraw support for an algorithm.  The two arguments are the
     driver and algorithm identifiers, respectively.  Typically, drivers for
     pcmcia(4) crypto cards that are being ejected will invoke this routine
     for all algorithms supported by the card.  If called with
     CRYPTO_ALGORITHM_ALL, all algorithms registered for a driver will be
     unregistered in one go and the driver will be disabled (no new sessions
     will be allocated on that driver, and any existing sessions will be
     migrated to other drivers).  The same will be done if all algorithms
     associated with a driver are unregistered one by one.

     The calling convention for the three driver-supplied routines is:

     int (*newsession) (void *, u_int32_t *, struct cryptoini *);
     int (*freesession) (void *, u_int64_t);
     int (*process) (void *, struct cryptop *, int);

     On invocation, the first argument to newsession() contains the driver
     identifier obtained via crypto_get_driverid().  On successfully return-
     ing, it should contain a driver-specific session identifier.  The second
     argument is identical to that of crypto_newsession().

     The freesession() routine takes as argument the SID (which is the con-
     catenation of the driver identifier and the driver-specific session iden-
     tifier).  It should clear any context associated with the session (clear
     hardware registers, memory, etc.).

     The process() routine is invoked with a request to perform crypto pro-
     cessing.  This routine must not block, but should queue the request and
     return immediately.  Upon processing the request, the callback routine
     should be invoked.  In case of error, the error indication must be placed
     in the crp_etype field of the cryptop structure.  The hint argument can
     be set to CRYPTO_HINT_MORE the there will be more request right after
     this request.  When the request is completed, or an error is detected,
     the process() routine should invoke crypto_done().  Session migration may
     be performed, as mentioned previously.

     The kprocess() routine is invoked with a request to perform crypto key
     processing.  This routine must not block, but should queue the request
     and return immediately.  Upon processing the request, the callback rou-
     tine should be invoked.  In case of error, the error indication must be
     placed in the krp_status field of the cryptkop structure.  When the
     request is completed, or an error is detected, the kprocess() routine
     should invoke crypto_kdone().

     crypto_register(), crypto_kregister(), crypto_unregister(),
     crypto_newsession(), and crypto_freesession() return 0 on success, or an
     error code on failure.  crypto_get_driverid() returns a non-negative
     value on error, and -1 on failure.  crypto_getreq() returns a pointer to
     a cryptop structure and NULL on failure.  crypto_dispatch() returns
     EINVAL if its argument or the callback function was NULL, and 0 other-
     wise.  The callback is provided with an error code in case of failure, in
     the crp_etype field.

     sys/crypto/crypto.c  most of the framework code

     condvar(9), ipsec(4), pcmcia(4), malloc(9)

     Angelos D. Keromytis, Jason L. Wright, and Theo de Raadt, The Design of
     the OpenBSD Cryptographic Framework, Usenix, 2003, June 2003.

     The cryptographic framework first appeared in OpenBSD 2.7 and was written
     by Angelos D. Keromytis <>.

     Sam Leffler ported the crypto framework to FreeBSD and made performance

     Jonathan Stone <> ported the cryptoframe from FreeBSD
     to NetBSD.  opencrypto first appeared in NetBSD 2.0.

     The framework currently assumes that all the algorithms in a
     crypto_newsession() operation must be available by the same driver.  If
     that's not the case, session initialization will fail.

     The framework also needs a mechanism for determining which driver is best
     for a specific set of algorithms associated with a session.  Some type of
     benchmarking is in order here.

     Multiple instances of the same algorithm in the same session are not sup-
     ported.  Note that 3DES is considered one algorithm (and not three
     instances of DES).  Thus, 3DES and DES could be mixed in the same

     A queue for completed operations should be implemented and processed at
     some software spl(9) level, to avoid overall system latency issues, and
     potential kernel stack exhaustion while processing a callback.

     When SMP time comes, we will support use of a second processor (or more)
     as a crypto device (this is actually AMP, but we need the same basic sup-

NetBSD 5.0.1                   December 20, 2003                  NetBSD 5.0.1

You can also request any man page by name and (optionally) by section:


Use the DEFAULT collection to view manual pages for third-party software.

©1994 Man-cgi 1.15, Panagiotis Christias
©1996-2018 Modified for NetBSD by Kimmo Suominen