IPSEC(4)                NetBSD Kernel Interfaces Manual               IPSEC(4)

NAME
     ipsec -- IP security protocol

DESCRIPTION
     ipsec is a security protocol in the Internet Protocol (IP) layer.  ipsec
     is defined for both IPv4 and IPv6 (inet(4) and inet6(4)).  ipsec consists
     of two sub-protocols:

     Encapsulated Security Payload (ESP) protects IP payloads from wire-tap-
             ping (interception) by encrypting them with secret key cryptogra-
             phy algorithms.

     Authentication Header (AH) guarantees the integrity of IP packets and
             protects them from intermediate alteration or impersonation, by
             attaching cryptographic checksums computed by one-way hash func-
             tions.

     ipsec has two operation modes:

     Transport mode is for protecting peer-to-peer communication between end
             nodes.

     Tunnel mode includes IP-in-IP encapsulation operation and is designed for
             security gateways, as in Virtual Private Network (VPN) configura-
             tions.

     Since version 6, NetBSD uses the IPSEC implementation formerly known as
     FAST_IPSEC.  Its specifics and kernel options are described in the
     fast_ipsec(4) manual page.

   Kernel interface
     ipsec is controlled by two engines in the kernel: one for key management
     and one for policy.

     The key management engine can be accessed from userland by using PF_KEY
     sockets.  The PF_KEY socket API is defined in RFC2367.

     The policy engine can be controlled through the PF_KEY API, setsockopt(2)
     operations, and the sysctl(3) interface.  The kernel implements an
     extended version of the PF_KEY interface and allows you to define IPsec
     policy like per-packet filters.  setsockopt(2) is used to define per-
     socket behavior, and sysctl(3) is used to define host-wide default behav-
     ior.

     The kernel does not implement dynamic encryption key exchange protocols
     like IKE (Internet Key Exchange).  That should be done in userland
     (usually as a daemon), using the APIs described above.

   Policy management
     The kernel implements experimental policy management code.  You can man-
     age the IPsec policy in two ways.  One is to configure per-socket policy
     using setsockopt(2).  The other is to configure kernel packet filter-
     based policy using the PF_KEY interface, via setkey(8).  In both cases,
     IPsec policy must be specified with syntax described in
     ipsec_set_policy(3).

     With setsockopt(2), you can define IPsec policy on a per-socket basis.
     You can enforce particular IPsec policy on packets that go through a par-
     ticular socket.

     With setkey(8) you can define IPsec policy for packets using a form of
     packet filtering rules.  See setkey(8) for details.

     In the latter case, ``default'' policy is allowed for use with setkey(8).
     By configuring policy to default, you can refer to system-wide sysctl(8)
     variables for default settings.  The following variables are available.
     1 means ``use'', and 2 means ``require'' in the syntax.

     Name                                 Type          Changeable
     net.inet.ipsec.esp_trans_deflev      integer       yes
     net.inet.ipsec.esp_net_deflev        integer       yes
     net.inet.ipsec.ah_trans_deflev       integer       yes
     net.inet.ipsec.ah_net_deflev         integer       yes
     net.inet6.ipsec6.esp_trans_deflev    integer       yes
     net.inet6.ipsec6.esp_net_deflev      integer       yes
     net.inet6.ipsec6.ah_trans_deflev     integer       yes
     net.inet6.ipsec6.ah_net_deflev       integer       yes

     If the kernel finds no matching policy, the system-wide default value is
     applied.  System-wide defaults are specified by the following sysctl(8)
     variables.  0 means ``discard'' which asks the kernel to drop the packet.
     1 means ``none''.

     Name                                 Type          Changeable
     net.inet.ipsec.def_policy            integer       yes
     net.inet6.ipsec6.def_policy          integer       yes

   Miscellaneous sysctl variables
     The following variables are accessible via sysctl(8), for tweaking kernel
     IPsec behavior:

     Name                                 Type          Changeable
     net.inet.ipsec.ah_cleartos           integer       yes
     net.inet.ipsec.ah_offsetmask         integer       yes
     net.inet.ipsec.crypto_support        integer       yes
     net.inet.ipsec.dfbit                 integer       yes
     net.inet.ipsec.ecn                   integer       yes
     net.inet.ipsec.debug                 integer       yes
     net.inet6.ipsec6.ecn                 integer       yes
     net.inet6.ipsec6.debug               integer       yes

     The variables are interpreted as follows:

     ipsec.ah_cleartos
             If set to non-zero, the kernel clears the type-of-service field
             in the IPv4 header during AH authentication data computation.
             The variable is for tweaking AH behavior to interoperate with
             devices that implement RFC1826 AH.  It should be set to non-zero
             (clear the type-of-service field) for RFC2402 conformance.

     ipsec.ah_offsetmask
             During AH authentication data computation, the kernel will
             include a 16 bit fragment offset field (including flag bits) in
             the IPv4 header, after computing logical AND with the variable.
             The variable is for tweaking AH behavior to interoperate with
             devices that implement RFC1826 AH.  It should be set to zero
             (clear the fragment offset field during computation) for RFC2402
             conformance.

     ipsec.crypto_support
             This variable configures the kernel behavior for selecting
             encryption drivers.  If set to > 0, the kernel will select a
             hardware encryption driver first.  If set to < 0, the kernel will
             select a software encryption driver first.  If set to 0, the ker-
             nel will select either a hardware or software driver.

     ipsec.dfbit
             This variable configures the kernel behavior on IPv4 IPsec tunnel
             encapsulation.  If set to 0, the DF bit on the outer IPv4 header
             will be cleared.  1 means that the outer DF bit is set from the
             inner DF bit.  2 means that the DF bit is copied from the inner
             header to the outer.  The variable is supplied to conform to
             RFC2401 chapter 6.1.

     ipsec.ecn
             If set to non-zero, IPv4 IPsec tunnel encapsulation/decapsulation
             behavior will be friendly to ECN (explicit congestion
             notification), as documented in draft-ietf-ipsec-ecn-02.txt.
             gif(4) talks more about the behavior.

     ipsec.debug
             If set to non-zero, debug messages will be generated via
             syslog(3).

     Variables under the net.inet6.ipsec6 tree have similar meanings to their
     net.inet.ipsec counterparts.

PROTOCOLS
     The ipsec protocol works like a plug-in to inet(4) and inet6(4) proto-
     cols.  Therefore, ipsec supports most of the protocols defined upon those
     IP-layer protocols.  Some of the protocols, like icmp(4) or icmp6(4), may
     behave differently with ipsec.  This is because ipsec can prevent icmp(4)
     or icmp6(4) routines from looking into IP payload.

SEE ALSO
     ioctl(2), socket(2), ipsec_set_policy(3), fast_ipsec(4), icmp6(4),
     intro(4), ip6(4), racoon(8), setkey(8), sysctl(8)

STANDARDS
     Daniel L. McDonald, Craig Metz, and Bao G. Phan, PF_KEY Key Management
     API, Version 2, RFC, 2367.

BUGS
     IPsec support is subject to change as the IPsec protocols develop.

     There is no single standard for policy engine API, so the policy engine
     API described herein is just for the version introduced by KAME.

     AH and tunnel mode encapsulation may not work as you might expect.  If
     you configure inbound ``require'' policy against AH tunnel or any IPsec
     encapsulating policy with AH (like ``esp/tunnel/A-B/use
     ah/transport/A-B/require''), tunneled packets will be rejected.  This is
     because we enforce policy check on inner packet on reception, and AH
     authenticates encapsulating (outer) packet, not the encapsulated (inner)
     packet (so for the receiving kernel there's no sign of authenticity).
     The issue will be solved when we revamp our policy engine to keep all the
     packet decapsulation history.

     Under certain condition, truncated result may be raised from the kernel
     against SADB_DUMP and SADB_SPDDUMP operation on PF_KEY socket.  This
     occurs if there are too many database entries in the kernel and socket
     buffer for the PF_KEY socket is insufficient.  If you manipulate many
     IPsec key/policy database entries, increase the size of socket buffer or
     use sysctl(8) interface.

NetBSD 7.0                       March 6, 2017                      NetBSD 7.0

You can also request any man page by name and (optionally) by section:

Command: 
Section: 
Architecture: 
Collection: 
 

Use the DEFAULT collection to view manual pages for third-party software.


©1994 Man-cgi 1.15, Panagiotis Christias
©1996-2017 Modified for NetBSD by Kimmo Suominen